Benchmarking the Task Graph Scheduling Algorithms

Yu-Kwong Kwok! and Ishfaq Ahmad?

'Parallel Processing Laboratory, School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285, USA

2Depm‘tmcnt of Computer Science
The Hong Kong University of Science and Technology, Hong Kong

Abstract’

The problem of scheduling a weighted directed acyclic graph
(DAG) to a set of homogeneous processors to minimize the
completion time has been extensively studied. The NP-
completeness of the problem has instigated researchers to propose
a myriad of heuristic algorithms. While these algorithms are
individually reported to be efficient, it is not clear how effective
they are and how well they compare against each other. A
comprehensive performance evaluation and comparison of these
algorithms entails addressing a number of difficult issues. One of
the issues is that a large number of scheduling algorithms are based
upon radically different assumptions, making their comparison on
a unified basis a rather intricate task. Another issue is that there is
no standard set of benchmarks that can be used to evaluate and
compare these algorithms. Furthermore, most algorithms are
evaluated using small problem sizes, and it is not clear how their
performance scales with the problem size. In this paper, we first
provide a taxonomy for classifying various algorithms into
different categories according to their assumptions and
functionalities. We then propose a set of benchmarks which are of
diverse structures without being biased towards a particular
scheduling technique and still allow variations in important
parameters. We have evaluated 15 scheduling algorithms, and
compared them using the proposed benchmarks. Based upon the
design philosophies and principles behind these algorithms, we
interpret the results and discuss why some algorithms perform
better than the others.

Keywords: Performance Evaluation, Benchmarks,
Multiprocessors, Parallel Processing, Scheduling, Task Graphs,

Scalability.

1 Introduction

The problem of scheduling a weighted directed acyclic graph
(DAG), also called a task graph or macro-dataflow graph, to a set
of homogeneous processors to minimize the completion time, has
intrigued researchers even before the advent of parallel computers.
The problem is NP-complete in its general forms [15], and
polynomial-time solutions are known only for a few restricted
cases [11]. Since tackling the scheduling problem in an efficient
manner is imperative for achieving a meaningful speedup from a
parallel or distributed system, it continues to be a focus of great
attention from the research community. Considerable research
efforts expended in solving the problem have resulted in a myriad
of heuristic algorithms. While each heuristic is individually
reported to be efficient, it is not clear how effective these
algorithms are and how they compare against each other on a
unified basis.

The objectives of this study include proposing a set of
benchmarks and using them to evaluate the performance of a set of
DAG scheduling algorithms (DSAs) with various parameters and
performance measures. Since a large number of DSAs have been
reported in the literature with radically different assumptions, it is
important to demarcate these algorithms into various classes
according to their assumptions about the program and machine
model. A performance evaluation and comparison study should
provide answers to the following questions:

+. This research was supported by a grant from the Hong Kong
Research Grants Council under contract number HKUST 734/96E.

1063-7133/98 $10.00 © 1998 IEEE

531

* What are the important performance measures? The
performance of a DSA is usually measured in terms of the
quality of the schedule (the total duration of the schedule) and
the running time of the scheduling algorithm. Sometimes, the
number of target processors allocated is also taken as a
performance parameter. One problem is that usually there is a
trade-off between the first two performance measures; that is,
efforts to obtain better solution often incur a higher time-
complexity. Furthermore, using more processors can possibly
result in a better solution. Another problem is that most
algorithms are evaluated using small problem sizes, and it is
not known how the algorithms scale with the problem size.
What problem parameters affect the performance? The
performance of DSAs, in general, tends to bias towards the
problem graph structure. In addition, other parameters such as
the communication-to-computation ratio, the number of nodes
and edges in the graph, and the number of target processors
also affect the performance of a DSA. Thus, it is important to
measure the performance of DSAs by robustly testing them
with various ranges of such parameters.

What benchmarks should be used? There does not exist any
set of benchmarks that can be considered as a standard to
evaluate and compare various DSAs on a unified basis. The
most common practice is to use random graphs. The use of
task graphs derived from various parallel applications is also
common. However, in both cases, there is again no standard
that can provide a robust set of test cases. Therefore, there is a
need for a set of benchmarks that are representative of various
types of synthetic and real test cases. These test cases should
be diverse without being biased towards a particular
scheduling technique and should allow variations in important
parameters.

How does the performance of DSAs vary? Since most DSAs
are based on heuristics techniques, bounds on their
performance levels and variations from the optimal solution
are not known. In addition, the average, worst, and best case
performance of these algorithms is not known. Furthermore,
since not all DSAs make identical assumptions, they must be
segregated and evaluated within various categories.

Why some algorithms perform better? Although some
qualitative and quantitative comparisons of some DSAs have
been carried out in the past (see [16], [19], [30]), they mainly
presented experimental results without giving a rationale of
why some algorithms performs well and some do not. The
previous studies were also limited to a few algorithms and did
not make a comprehensive evaluation. The design
philosophies and characteristics of various algorithms must be
understood in order to assess their merits and deficiencies. The
qualitative analyses can ensue some future guidelines for
designing even better heuristics. :

In this paper, we describe a performance study of various DSAs
with the aim of providing answers to the questions posed above.
First, we define the DAG scheduling problem in the next section,
and provide an overview of various fundamentals scheduling
techniques and attributes that are shared by a vast number of DSAs
in Section 3. This is followed by a chronological summary and a
taxonomy of various DSAs reported in the literature presented in
Section 4. Since it is not the objective of this research to provide a
survey on this topic, the purpose of this taxonomy is to set a context
in which we select a set of algorithms for benchmarking. We select
15 algorithms and explain their major characteristics. All of these
algorithms have been implemented on a common platform and
tested using the same suite of benchmark task graphs with a wide

range of parameters which will be introduced in Section 5.
Comparisons are made within - each group whereby these

algorithms are ranked from the performance and complexity -

standpoints. Section 6 includes the results and comparisons and
Section 7 concludes the paper.

2 The Model

We consider the general model assumed for a task graph that
has been commonly used by many researchers (see [8] for
explanation). Some simplifications in the model are possible, and
will be introduced later. We assume the system consists of a
number of identical (homogeneous) processors. Although
scheduling on heterogeneous processors is .also an interesting
problem, we - confine the scope of this study to homogeneous
processors only. The number of processors can be limited (given as
an input parameter to the scheduling algorithm) or unlimited.

The DAG is a generic model of a parallel program consisting
of a set of processes (nodes) among which there are dependencies.
A node in the DAG represents a task which in turn is a set of
instructions that must be executed sequentially without preemption
in the same processor. A node with no parent is called an ernitry node
and a node with no child is called an exit node. The weight on a
node is called the computation cost of a node n; and is denoted by
w(n;). The graph also has directed edges representing a partial
order among the tasks. The partial order introduces a precedence-
constrained directed acyclic graph (DAG) and implies that if
n;—>n;, then n; is a child which cannot start until its parent n,
finishes and sends its data to n; . The weight on an edge is called
the communication cost of the edge and is denoted by c(n, n;).
This cost is incurred if n; and n; are scheduled on different
processors and is considered to be zero if n; and n; are scheduled
on the same processor. The communication-to- computatton -ratio
(CCR) of a parallel program is defined as its average
communication cost divided by its average computation cost on a
given system.

The node and edge weights are usually obtained by estimation
or profiling {13], [32]. Scheduling of a DAG is performed statically
(i.e., at.compile time) since the information about the DAG
structure and costs associated with nodes and edges must be
available a priori. The objective of DAG.scheduling is to find an
assignment and the start times of tasks to processors such that the
schedule length (i.e., the overall duration of the schedule) is
minimized such that the precedence constraints are preserved.

3 Characteristics of Scheduling Algorithms

The general DAG scheduling problem has been shown to be
NP-complete [15], and remains intractable even with highly
simplifying assumptions applied to the task and machine models
[26], [27]. Nevertheless, polynomial-time algorithms for some
special cases have been reported: [4], [11].

In view of the intractability of the problem, researchers have
resorted to designing efficient heuristics which can find good
solutions within a reasonable amount of time. Most scheduling
heuristic algorithms are based on the list scheduling technique. The
basic idea in list scheduling is to assign priorities to the nodes of the
DAG and place the nodes in a list arranged in descending order of
priorities. The node with a higher priority is examined for
scheduling before a node with a lower priority; if more than one
node has the same priority, ties are broken using some method.

There are, however, numerous variations in the methods of
assigning priorities and maintaining the ready list, and criteria for
selecting a processor to-accommodate a node. We describe below
some of these variations and show that they can .be used to
characterize most scheduling algorithms.

Assigning Priorities to Nodes: Two major attributes for
assigning priorities are the r-level (top level) and b-level (bottom
level). The r-level of a node n; is the length of the longest path from
an entry node to 7; in the DAG (excluding n,). Here, the length of a
path is the sum of all the node and edge weights along the path. The
t-level of n; highly correlates with n;’s earliest possible start time.
The t-level of a node is a dynamic attribute because the weight of
an edge may be zeroed when the two incident nodes are scheduled

to the same processor. The b-level of a node #; is.the length of the
longest path from node n;-to an’éxit nede and is bounded by the
length-of the critical path. A crifical path (CP) of a DAG, is a path
from an entry node to an exit node, whose length is the maximum,
Different DSAs have used the t-level-and b-level attributes in 4
variety of ways. Some algorithms assign a higher priority to a node
with a smaller f-level while some algorithms assign a higher
priority to a node with a larger b-level. Still some algorithms assign
a higher priority to a node with a larger (b-level — t-level). In
general, scheduling in descending order of b-level tends to schedule
critical path nodes first while scheduling in ascending order of ¢-
level tends to schedule nodes in a topological order [16].

Insertion vs. Non-Insertion: When determining the start time
of a node on a processor P, some algorithms only . consider
scheduling a node after the last node on P. Some algorithms also
consider other idle time slots on P and may insert a node between
two already scheduled nodes.

Critical-Path-Based vs. Non-Critical-Path-Based: Critical-
path-based algorithms determine scheduling order or give a higher
priority to a critical-path node - (CPN). ‘Non-critical-path-based
algorithms do not give special preference to CPNs; they assign
priorities simply based on the levels or other attributes of the nodes,

Static List vs. Dynamic List: The set of ready nodes are often
maintained as a ready list. Initially, the ready list includes-only the
entry nodes. After a node is scheduled, the nodes freed by the
scheduled node are inserted into the ready list such that the list is
sorted in descending order of node priorities. The hist can be
maintained in two ways: A ready list' is static if it'is constructed
before scheduling starts and remains’ the same throughout the
whole scheduling process. A ready list is called dynamic if it is

‘rearranged according to the changing riode priorities.

532

Greedy vs. Non-Greedy: In assigning a.node to a processor,
most scheduling algorithms attempt to minimize the start-time of a
node. This is a greedy strategy. However, some algorithms do not
necessarily minimize the start-time of a node but consider other
factors as well.

Time-Complexity: The time-complexity of a DSA is usually
expressed in terms of the number of node, v, the number of edges,
e, and the number of processors, p. The major steps in an algorithm
include a traversal of the DAG and a search of slots in the
processors to place a node. Simple static priority assignment in
general results in a lower time-complexity while dynamic priority
assignment inevitably leads to a higher time-complexity of the
scheduling algorithm. Backtracking can incur a very high time
complexity and is therefore not usually employed.

4 A Classification of DAG Scheduling Algorithms

The static DAG scheduling problem has been tackled with
large variations in the task graph and: machines models. Figure 1
provides a classification and chronological summary of various
static DSAs. Since it-is not the purpose of this paper to provide a
survey of such algorithms, this'summary is by no means complete
(a more extensive taxonomy on the general scheduling problem has
been proposed in [8]). Furthermore, a complete overview of the
literature is beyond the scope of this paper. Nevertheless, we
believe our classification scheme can-be extended to most of the
reported DSAs.

Earlier algorithms have made radically simplifying
assumptions about the task graph representing the program and the
model of the parallel processor system [L1]. These algorithms
assume the graph to be of a special structure such as a tree, forks-
join, etc. In general, however, parallel programs come in a variety
of structures, and as such many recent algorithms are designed to
tackle arbitrary graphs. These algorithms can be further divided
into two categories. Some algorithms. assume the computational
costs of all the tasks to be uniform [1'1] whereas other algorithms
assume the computational costs of tasks to be arbitrary, Some of the
earlier work has also assumed the inter-task communication to be
zero, that is, the task graph contains precedence but without cost.
The problem becomes less -complex: in ‘the absence of
communication delays.. ~ Furthermore, - ‘schedulirig =~ with

(Task Precedence Graph

)

Arbitrary Graph Structure

‘ Restricted Graph Striciure (1979): Papadimitriou and Yannakakis's Interval-Order algorithm [11]
(1993): Ali and El-Rewini’s Interval-Order algorithm [4]

Unit Computational Costs

Arbitrary Compntational Costs

(1961): Hu’s algorithm {11}
(1972): Coffman and Graham’s 2-Processor algorithm [11]

— (1972): Dynamic Prog. Scheduling by R sthy et al. [11]

No Communication

(With Communication

[—» (1974): Level-based algorithms by Adam ez al. [11}
) —3p (1984): CP/MISF by Kasahara and Narita [18]

—P» (1984): DF/IHS by Kasahara and Narita [18])
—> (1988): DSH by Kruatrachue & Lewis [21]

|

No Duplication C

Duplication.

> (1990): PY by Papadimitriou & Yannakakis {27]
[—> (1991): LWB by Colin & Chretienne {12]

)—

— (1992): BTDH by Chung & Ranka [10]
—P (1993): LCTD by Chen er al. [9}
— (1994); CPFD by Ahmad & Kwok [1]
—P (1996): MJD by M. Palis et al. [26}

Limited Number of Processors (Unlimited Number of Processors

(1988): LC by Kim & Browne {20]
(1989): EZ by Sarkar [28)

(1990): MD by Wu & Gajski {32]
(1994): DSC by Yang & Gerasoulis [33]
{1996): DCP by Kwok & Ahmad [22]

(Processors Fully Connected

)

(1993): DLS by Sih & Lee [31]
Processors Arbitrarily Connected (1994): BU by Mehdiratta & Ghose {25]

(1974): HLFET by Adam et al. [11]

(1987): ISH by Kruatrachue & Lewis {21]
) (1989): CLANS by McCreary & Gill {24]

(1989): LAST by Baxter & Patel {7]

(1989): ETF by Hwang er al. {17]

(1990): MCP by Wu & Gajski [32]

communication delays is NP-complete.

Scheduling with communication may be done using
duplication or without duplication. The rationale behind the task-
duplication based (TDB) scheduling algorithms is to reduce the
communication overhead by redundantly allocating some nodes to
multiple processors. In duplication-based scheduling, different
strategies can be employed to select ancestor nodes for duplication.

Non-TDB algorithms assuming arbitrary task graphs with
arbitrary costs on nodes and edges can be divided into two
categories: some scheduling algorithms assume the availability of
unlimited number of processors, while some other algorithms
assume a limited number of processors. The former class of
algorithms are called the UNC (unbounded number of clusters)
scheduling algorithms [3] and the latter the BNP (bounded number
of processors) scheduling algorithms {3]. In both classes of

algorithms, the processors are assumed to be fully-connected and -

no attention is paid to link contention or routing strategies used for
communication. The technique employed by the UNC algorithms
is also called clustering (see [14], [16], [20], (26}, [34] for details).
At the beginning of the scheduling process, each node is considered
a cluster. In the subsequent steps, two clusters’ are merged if the
merging reduces the completion time. This merging procedure
continues until no cluster can be merged. The rationale behind the
UNC algorithms is that they can take advantage of using more
processors to further reduce the scheduie length. However, the
clusters generated by the UNC may need a post-processing step for
mapping the clusters onto the processors because the number of
processors available may be less than the number of clusters.

A few algorithms have been designed to take into account the
most general model in which the system is assumed to consist of an

+. We use the term cluster and processor interchangeably since in the
UNC scheduling algorithms, merging a single node cluster to
another cluster is analogous to scheduling a node to a processor.

(1995): MH by El-Rewini & Lewis [14]

Figure 1: A partial taxonomy of the multiprocessor scheduling problem.

arbitrary network topology, of which the links are not contention-
free. These algorithms are called the APN (arbitrary processor
network) scheduling algorithms [3]. In addition to scheduling tasks,
the APN algorithms also schedule messages on the network
communication links.

In the following we list the algorithms chosen in our study. For
detailed descriptions and characteristics we refer the reader to the
sited publications. To narrow the scope of this paper, we do not
consider TDB algorithms (for a more detailed overview of such
algorithm, see [1]).

* BNP Scheduling Algorithms: HLFET [11], ISH [21], MCP

[32], ETF [17], DLS [31}], and LAST [7].

» UNC Scheduling Algorithms: EZ {28], LC [20], DSC [34],

MD [32], and DCP [22].

¢ APN Scheduling Algorithms: MH [14], DLS [31}, BU [25]

and BSA [2].

5 Benchmark Graphs

In our study, we propose and use a suite of benchmark graphs
consisting of 5 different sets. The generation techniques and
characteristics of these benchmarks are described as follows:

5.1 Peer Set Graphs

The Peer Set Graphs (PSGs) are example task graphs used by
various researchers and documented in publications. These graphs
are usually small in size but are useful in that they can be used to
trace the operation of an algorithm by examining the schedule
produced. A detailed description of the graphs is provided in
Section 6.1.

5.2 Random Graphs with Optimal Solutions

These are random graphs for which we have obtained optimal
solutions using a branch-and-bound algorithm. We call these graph
random graphs with optimal solutions using branch-and-bound
(RGBOS). This suite of random task graphs consists of three
subsets of graphs with different CCRs (0.1, 1.0, and 10.0). Each
subset consists of graphs in which the number of nodes vary from

533

10 to 32 with increments of 2, thus, totalling 12 graphs per set. The
graphs were randomly generated as follows: First the computation
cost of each node in the graph was randomly selected from a
uniform distribution with the mean equal to 40 (minimum = 2 and
maximum = 78). Beginning with the first node, a random number
indicating the number of children was chosen from a uniform
distribution with the mean equal to v/ 10 . The communication cost
of each edge was also randomly selected from a uniform
distribution with the mean equal to 40 times the specified value of
CCR. To obtain optimal solutions for the task graphs, we applied a
parallel A* algorithm [23] to the graphs. Since generating optimal
solutions for arbitrarily structured. task graphs takes exponential
time, it is not feasible to obtain optimal solutions for large graphs.
5.3 Random Graphs with Pre-Determined Optimal Schedules

These are random graphs with pre-determined optimal
solutions (RGPOS). The method of generating graphs with known
optimal schedules is as follows: Suppose that the optimal schedule
length of a graph and the number of processors used are specified
as L,,, and p, respectively. For each PE i, we randomly generate a
number x; from a uniform distribution with mean v/p . The time
interval between 0 and L,,, of PE { is then randomly partitioned
into x; sections. Each section represents the execution span of one
task, thus, x; tasks are “scheduled” to PE i with no idle time slot.
In this manner, v tasks are generated so that every processor has the
same schedule length. To generate an edge, two tasks n, and n,
are randomly chosen such that FT(n,) <ST(n,). The edge is
made to emerge from n,, to n, . Asto the edge weight, there are two
cases to consider: (i) the two tasks are scheduled to different
processors, and (ii) the two tasks are scheduled to the same
processor. In the first case the edge weight is randomly chosen from
auniform distribution with maximum equal to ($7(n,) - FT(n,))
(the mean is adjusted according to the given CCR value). In the
second case the edge weight can be an arbitrary positive integer
because the edge does not affect the start and finish times of the
tasks which are scheduled to the same processor. We randomly
chose the edge weight for this case according to the given CCR
value. Using this method, we generated three sets of task graphs
with three CCRs: 0.1, 1.0, and 10.0. Each set consists of graphs in
which the number of nodes vary. from 50 to 500 in increments of
50; thus, each set contains 10 graphs.
5.4 Random Graphs without Optimal Schedules

The fourth set of benchmark graphs, referred to as random
graphs with no known optimal solutions (RGNOS), consists of 250
randomly task graphs. The method of generating these random task
graphs is the same as that in RGBOS. However, the sizgs of these
graphs are much larger, varying from 50 nodes to 500 nodes with
increments of 50. For generating the complete set of 250 graphs, we
varied three parameters: size, communication-to-computation ratio
(CCR), and parallelism. Five different values of CCR were
selected: 0.1, 0.5, 1.0, 2.0 and 10.0. The parallelism parameter
determines the widrh (defined as the largest number of non-
precedence-related nodes in the DAG) of the graph. Five different
values of parallelism were chosen: 1,2, 3,4 and 5. A paratlelism of
1 means the average width of the graph is 4/v, a value of 2 means
the graph has an average width of 2.Jv, and so on. Our main
rationale for using these large random graphs as a test suite is that
they contain as their subset a variety of graph structures. This
avoids any bias that an algorithm may have towards a particular
graph structure.
5.5 Traced Graphs

The last set of benchmark graphs, called traced graphs (TG),
represent some of the numerical parallel application programs
obtained via a parallelizing compiler [3]. We use Cholesky
factorization graphs for this category.

6 Performance Results and Comparison

In this section, we present the performance results and
comparisons - of ‘the 15 scheduling algorithms which were
implemented on a SUN SPARC IPX workstation with all of the
benchmarks described above. The algorithms are compared within
their own classes, although some comparison of UNC and BNP
algorithms are also carried out. The comparisons are made using

the following six measures.
* Normalized Schedule Length (NSL) The main perforthance
measure of an algorithm is the schedule length of its output
schedule. The NSL- of an - algorithm is" deéfined as:

NSL = L/(Y w(n,-)), where L is the schedule fength. It
n,e CP . .

should be noted that the sum-of computation costs on the CP
represents a lower bound on'the schedule length. Such lower
bound may not always be possible to achieve, arid the optimal
schedule length may be larger than this bound.
Number of Processors Used: The number of processors used
is another important measuré of an algorithm ‘and it varies
widely for different algorithms. The number of processors
used are measured for the BNP and UNC algorithms.
Running Time of the Algorithms: The running time of a
scheduling algorithm is ~another important- performance
measure because a long running time can severely limit the
scalability of an algorithm.
6.1 Results for the Peer Set Graphs

The results. of applying the UNC and BNP algorithms to the
PSG are shown in Table 1. The APN algorithms were not applied
to this set of example graphs because many network topologies are
possible as test cases making a fair comparison quite difficult. As
can be seen from the table, the schedule lengths produced. vary
considerably, despite the small sizes of. the -graphs. This
phenomenon is contrary to our expectation that the algorithms
would generate the same schedule lengths for most of the cases. It
also indicates that the performance of various DSAs is more
sensitive to the diverse structures of the graphs rather than- their
sizes. A plausible explanation for this pathological observation is
that the ineffective scheduling “technique employed in some
algorithms leads to mistakes made in the “earlier stages of the
scheduling process so that long schedule lengths are produced.

Table 1: Schedule lengths genemtcd by the UNC and BNP algorithms for
the PSGs.

UNC Algorithms BNF Algorithins
Source of task graph- "y c T £7 | Mb | DSC | DCP | HLFET | ISH | ETF | LAST [MCP| DLS
ABinad and Rwok (2102 | 5 | 117 | 350 | 03 § B (3T 85 33T

h¥

13-pode graph)

Al-Maasarani {5] (2 16- 44 +H 50 4971 W 45 45 - 53 45 44
node graph)

Al-Moubamed {6](a 17- | 39 40 g 38 38 4 .38 41 43 40 41
rode graph)

Shirazi e al. [29] (a'11- 39 32 28 30 28 38 33 i 42 33 33
node graph) .

Colin and Chretienne [12] | 15 14 15 14 4 4 14 i4 14 14 14
(2 9-node graph)

Gerasoutis and Yang {161} 25 2% e} 18 |18 18 18 18 18 21 8
{a 7-node graph)

Kruatrachue and Lewis 19 16 1 15 n 1t 11 11 15 i1 11

(21) (a 15-node graph)
McCreary and Gill [24](a] 212 | 159 159 | 160. 149 180 180 -f 180 149 180 | ‘180
[$-node graph)
Chung and Ranka [10](a { 46 42 s 37 35 35 40 35 46 40. | 40
11.node graphy] i
'Wu and Gajski [32 a 18- 420 | 540 | 420 | 3901 390 390 1390 | 3% 470 3‘)Q 390
node graph) o N ; .
Yang and Gerasoulis [33}] 19 20 18 16 16 9 16 16 16 16 16,
(a 7-node graph)

Among the UNC algorithms, the DCP algorithm consisteritly
generate the best solutions. However, there is no single’ BNP
algorithm which outperform all the others. In summary, we make
the following observations:

« The greedy BNP algorithms give very similar schedule lengths
as can be seen from the resuits of HLFET, ISH, ETF, MCP and
DLS.

* Non-greedy and non-CP-based UNC-algorithms in general
perform worse than the greedy BNP algorithms.

e CP-based algorithms perform: better than non-CP-based ones
(DCP, DSC, MD and MCP perform better than others).

* Among the CP-based algorithms, dynamic-list algorithms
perform betier than static-list ones (DCP, DSC and MD in
general perform better.than MCP).

6.2 Results for RGBOS benchmarks
The results of the UNC and BNP algorithms for the RGBOS
benchmarks are shown in Table 2 and Table 3, respectively. Since

optimal solutions for specific network topologies are not known,
the APN algorithms were again not applied to these benchmarks.
Table 2 includes the percentage degradations from the optimal
schedule lengths produced by the UNC algorithms. The overall
average degradations for each algorithm are given in the last row.

results of Table 4 and Table 5 lead to similar conclusions as those
made in Section 6.2.

Table 4: The percentage degradations from the optimal
solutions of for the RGPOS benchmarks (UNC algorithms).

. CCR)
As can be seen, when CCR is 0.1, both MD and DCP generate) " . "
optimal solutions for half of the test cases, and the overall average Algonns {HC EZ MD DSC DCP {Lc &2 WD DSC DCP [LC BZ MD DSC DIP
degradation is less than 2%. Other algorithms generate optimal R R A YO Pl T L
solutions for a few number of cases and the overall average o 1y ei'ao as oo [OU By ss e FadB U
degradation is larger. Among all the UNC algorithms, the DCP I T R R+ S F B/ O L Rt A A
algorithm performs the best. P I a' g e mimn e
ﬁ 0.5 ;/v;’ gg ?_7’ Eg :;: l,;lg 9.57 20 126 157.2 210 Zg ﬁ: ?87
. . b 22 - 3 3 13 272 107 00 00 87 66 8. . X
Table 2: The percentage degradations from the optimal
solutions of for the RGBOS benchmarks (UNC algorithms). Noorop. F b oo v Tooqprovwe i o0 9 v
. - Avg. Dev. 20 63 X1 49 L1)m.: 170 81 90 26 169 28 &5 115 64
CCR ol Lo 100
Algonthmy LC EZ MDD bsSC P 1€ EZ MD DSC IXP LC EZ MDD DSC IXP . .
[[}] 00 00 D0 00 00 £2 87 00 00 o0 L1227 68 94 03 Tab]e. 5: The percentage degmdanons from thc .opllmal
2 E X AR .3 .} . . . 22 .
O S S solutions of for the RGPOS benchmarks (BNP algorithms).
16 00 09 00 00 00 38 36 09 09 43 140 22 00 34 00 CCR
P 61 57 S8 44 1S 60 18 00 76 00 104 98 S8 108 24 ol 0 1o
w N 70 12 A1 Se 21 38 67 43 60 39 03 00 19 02 00
E_ 5 ;z K;Q ';‘; ‘:Z [:.2 :;‘; n ;; ?’2 :N: ::0 é’—f ::g ;;:7 :3 Algornhms | HLFETISH ETF LASTMCP DLS | MLFETISH ETF LASTMCP DLS HLFETISH ETF LASTMCP DLS
X 52 a2 .). 04 R340 9. X X 1 As 5 E X 7, 2
PlEawnd Bmnume lmrown oML EED NREETL gnpwn s
52 las 33 13 04 os is 22 1o s2o1p 08 34 0% 12 00 o BRI P A B A
No.otOp. {2 7 6 1 & o0 2 2 7 o 1 1 s ¥ 250 00 00 00 107 00 12 165 162 00 08 142 %0 97 178 71 1A 33 73
- @ 300 124 74 65 03 47 19 06 63 73 165 16 102 Al 77 92 34 90 07
Avg. Dev. 14 2 L 2 Ly IR B 80 84 70 60 0 £ 350 33 42 56 00 64 24 203 00 00 176 00 42 285 73 105 294 140 119
,7 400 00 71 060 37 22 00 Ea] i1 43 79 71 8 23 106 1431 120 09 30
A) 64 03 00 46 00 13 26 49 106 91 10 04 186 137 216 200 22 119
500 61 29 S0 66 76 95 61 35 1 253 38 146 72 238 192 L1 69 129
Table 3: The percentage degradations from the optimal NeolOm §3 2 3 2 T I e oI 1 Tt R S E—
solutions of for the RGBOS benchmarks (BNP algorithms). AvE. Dev. 1 37 37 S1 33 28 181 710 70 118 63 59 £S5 118 120 152 13 78
CCR ol H Lo 100
Algoruhms | HLFETISH ETF LASTMCP DES | HLFETISH ETF LASTMCP OIS | HLFETISH ETF LASTMCP DLS 6.4 Results for the RGNOS Benchmarks
T T PR Since the optimal solutions for the RGNOS benchmarks are not
N I N IR R R known, we evaluate and compare the algorithms with a more
PR L I gg “g g;; o 5‘7’ $120 5) T34z s extensive range of parameters including graph sizes, CCRs, and
n 5. .). 2. 3 54 28 44 .3 3 13 X £
R L R T NI R R T parallelisms.
- K 14 6. i . .7 .
R R A R R i i AR Ll 6.4.1 Comparing Schedule Lengths
w0 32 28 00 1.2 29 48 51 76 80 2} 69 10 %% 14 R9 137 .
2 68 Ol L3 61 38 12 7158 K3 5403 180 00 73 06 08 00 The average NSLs for the BNP, UNC, and APN scheduhng
Soo0om |1 1 L . 08 1 ; v ‘ 1T o T 90T algorithms are given in Figure 2. Each curve in the plots is the
vg. Dev. 24 2 . A 2 27 43 EX I kX X EEEX - . . "
ikl B RE S A average of 25 tests cases with various CCRs and parallelism. Figure

Table 3 indicates that the BNP algorithms generate fewer
optimal solutions compared to the DCP. algorithm. The overall
average degradations are also higher than that of the DCP
algorithm. However, compared with other UNC algorithms, the
MCP, ETF, ISH, and DLS algorithms perform better both in terms
of the number of optimal solutions generated and the overall
degradations. Among all the BNP algorithms, the MCP algorithm
performs the best while the LAST algorithm performs the worst.

We summarize our observations from Table 2 and Table 3 as
follows.

* Greedy BNP algorithms have shown higher capability in
generating optimal solutions than the non-greedy and non-CP-
based UNC algorithms with DCP as the only exception.

» CP-based algorithms are clearly better than the non-CP-based
ones as can be seen from the results of DCP and MCP.

6.3 Results for the RGPOS Benchmarks

The results of applying the UNC and BNP algorithms to
RGPOS benchmarks are shown in Table 4 and Table 5,
respectively. Since optimal solutions for specific network
topologies are not known, the APN algorithms were again not
applied to the RGPOS task graphs. In Table 4, the percentage
degradations from the optimal schedule lengths of the UNC
algorithms are shown. The overall average degradations for each
algorithm are again shown in the last row of the table. As can be
seen, when CCR is 0.1, the DCP generates optimal solutions for
more than half of the test cases and the overall average degradation
is less than 2%. Other algorithms generate optimal solutions for a
few number of cases and the overall average degradation is larger.
The percentage degradations in general increase with CCRs. When
CCR is 10.0, none of the UNC algorithms except DCP can generate
any optimal solution. The results given in Table 5 indicate that the
BNP algorithms generate a similar number of optimal solutions and
values of percentage degradations. When CCR is 10.0, none of the
BNP algorithms generates any optimal solutions. In summary, the

535

2 reveals that the behavior of these algorithms is consistent in terms
of their relative performance for various number of nodes in the
graph. Among the BNP scheduling algorithms, the performance of
the MCP algorithm is the best while the LAST algorithm is
outperformed by all other algorithms. We also observe that the
NSLs for all the algorithms show a slightly increasing trend if the
task graph size is increased. This is because the proportion of nodes
other than those on the CP increases making it more difficult to
achieve the lower bound. For the UNC scheduling algorithms, we
observe that the DCP and MD algorithms perform significantly
better as compared to the rest of the algorithms. The NSLs for the
DSC and LC algorithms are similar.

Although the BNP algorithms are designed for a limited
number of processors (as an input parameter), we ran each
algorithm with a very large number of processors such that the
number of processors became virtually unlimited. From this
experiment, we noted the average number of processors used by
these algorithms for each graph size (the number of processors used
is shown later in Figure 3). In another experiment, we reduced the
number processors to 50% of that average. Since no significant
difference in the NSLs as well as the relative performance of these
algorithms can be observed, we do not include those results in this
paper. One possible reason for this phenomenon is that the schedule
length is dominated by the scheduling of CP nodes. In the case of a
very large number of processors, the non-CP nodes are spread
across many processors, while in the case of a fewer number of
processors, these nodes are packed together without making much
impact on the overall schedule length.

For the APN scheduling algorithms, the target architectures
included an 8-processor ring, an 8-processor hypercube, a 4 X 2
mesh, and an 8-processor clique. The average NSLs for these
experiments are shown in Figure 2(c). Each point on the curve now
represents the average of 100 NSLs. One reason for the much larger
NSLs in these cases is that the numbers of processors used were

(intentionally) much smaller. For example, a 500-node task graph
is scheduled to 8 processors'. The results of the APN algorithms
suggest that there can be substantial difference in the performance
of these algorithms. For example, significant differences are
observed between the NSLs of BSA and BU. The performance of
DLS is relatively stable with respect to.the graph size while MH
yields fairly long schedule lengths for large graphs. As can be seen,
the. BSA algorithm performs admirably well for large graphs. The
main reason for the better performance of BSA is an efficient
scheduling of ‘communication messages that can have a drastic
impact on the overall schedule length. In terms of the impact of the
topology, we find that all algorithms perform better on the
networks with more communication links. However, these results
are excluded due to space limitations.

Average NSL.

Average NSL.

2
50 100 1500 200 250 30 350 400 450 500 50 100 150 200 250 300 350 400 450 500

Mombor of Nodea Namberof odes
(a) UNC algorithms (b) BNP algorithms
)
0 o
2 z/ MR
g2 wm » -
g 00 v.;/f e ::SUA
0}y T TN /
NSO e

0
50 100 150200 250 300 350 400 450 500
Nurrber of Nodes

(c) APN algorithms

Figure 2: Average NSL of the UNC, BNP and
APN algorithms for RGNOS benchmarks.

6.4.2 Number of Processors Used

The number of processors used by an algorithm is an important
performance measure: especially for the algorithms that are
designed for using an unlimited number of processors. The BNP
algorithms are designed for a bounded number of processors, but as
explained earlier, were tested them with a very large number
(virtually unlimited number) of processors; we then noted the
number of processors actually used.

Figure 3(a) shows the average number of processors used by
the BNP scheduling algorithms. The DLS algorithm uses the
smallest number. of processors, even compared to ETF although
both algorithms share sirhilar concepts. The numbers of processors
used by the MCP and ETF algorithms are close. On the other hand,
these numbers for the HLFET and ISH are also similar.

Figure 3(b) shows the average number of processors used by
the UNC scheduling algorithms. As can be seen, the DSC algorithm
uses a large number of processors. This is because it uses a new
processor for every node whose start time cannot be reduced on a
processor already in use. The LC and EZ algorithms also.use more
processors than others because they pay no attention on the use of
processors. In contrast, the DCP algorithm has a special processor
finding strategy: as long as the schedule length is not affected, it
tries to schedule a child to a processor holding its parent even
though its start time may not reduce. The MD algorithm also uses

relatively smaller number of processors because, to schedules a
node to a processor, it first scans the already used processors.
6.4.3 Algorithm Running Times

In this section, we compare the running times of all the
algorithms. Table 6 shows the running times of the BNP scheduling
algorithms for various number of nodes in the task graph. Each
value in the table again is the average of 25 cases. The MCP

+. The number of processors used by a typical UNC algorithm is very
large—the LC algorithm, for instance, uses more than 100 proces-
sors for a 500-node task graph

536

Number of PES Used

Number of PEs Used

R
50 100 150 200 250 300 350 400. 450 500
Number of Nodes

(b) BNP algorithms

0
50 100 150 200 250 00 350 400 450 500
Humber of Nodes:

(a) UNC algorithms

Figure 3: The average number of processors
used for the RGNOS benchmarks.

algorithm is found to be the fastest algorithm while DLS and ETF
are slower than the rest. The large running times of the DLS and
ETF algorithms are primarily due to exhaustive calculations of the
start times of all of the ready tasks on all of the processors. The
running time of LAST and HLFET are also large while ISH takes
reasonable amounts of time: Based on-these running time results,
the BNP algorithms can be ranked in the order: MCP, ISH, HLFET,
LAST, and (DLS, ETF).

From the running times of UNC scheduling algomhms shown
in Table 6, we cbserve that the LC-and DSC algorithms yield the
minimum running time. The running times of MD, EZ and DCP are
close. Based on these running time results, these algorithms can be
ranked in the order: LC, DSC, EZ, DCP, and MD. For the APN
scheduling algorithms, the BU -algorithm is found to be the fastest.
The running times of the MH and BSA algorithms are close while
those of the DLS algorithm are relatively large. Based on these
results, in terms of running times, these algorithms can be ranked
in the order: BU, BSA, MH, and DLS.

Table 6: AVerage running times (in seconds) for ail
the algorithms using the RGNOS benchmarks.

BNP Algorithms

NG Algonthms ! APN Algorithms

Graph Sizes HLFETISH ETF LASTMCP DLS LC EZ MD DSC IXP MH DLS BSA BU

oo 04 01 03 05 01 03 o1 12 13 0L Ll

3 5. 369 1 20935.79.5
150 45 11 178 127 09 64 13 2439478 18 46 P28 W22 1036 57
500 54 25 202 164 LI 179 16 §13:.635 23 M6 1890 43401470 77

6.5 Results for Traced Graphs

For the traced graphs (TG) representmg the parallel numerical
application, Cholesky factorization; the results are shown in Figure
4, Since the application operates on matrices, the graph sizes
depend on the matrix dimensions. For a matrix dimension of N, the
graph size is O(N?). We note that the performance of the BNP
algorithms is quite similar with the exception that LAST performs
much worse. By contrast, the performance of the UNC algorithms
is much diverse. The relative performance of the APN algorithms
is quite similar for both applications.

7 Conclusions and Future Work ;

In this paper, we have presented the results of an extensive
performance study of 15 DSAs. Our study has revealed several
important findings:

e For both the BNP and UNC classes, algonthms emphasizing
the accurate scheduling of nodes on the critical-path are in
general better than the other algorithms, ‘
Dynamic critical-path is better -than static critical-path, as
demonstrated by both the DCP and DSC algorithms.

Insertion is better than non-insertion—for example, a simple
algorithm such as ISH employmg insertion can yield dramatic
performance.

Dynamic ‘ priority is in ‘general “better than static -priority,
although it can cause substantial complexity gain—for
example -the DLS and : ETF- algorithms -~ have - higher
complexities. However, this is not-always true—one exception,
for example, is that the MCP algorithm using static priorities
performs the best in the BNP class.

We have provided a set'of benchmarks which provide a variety
of test cases including two kinds of graphs with optimal solutions.

Avorage NSL

15 1
12 24 2 M N 4 49 % N9 & M 4 B M % M4 0 5 5

Matric Dimansion Mairbx Dimenslon
(a) UNC algorithms (b) BNP algorithms
£
bl /
7 |

150 eois

e B3A

100
oBY

Average NSL

Matrix Dimension
(c) APN Algorithms
Figure 4: Average NSL for

Cholesky factorization task graphs.

These can be good test cases for evaluating and comparing future
algorithms.

The current research concentrates on further elaboration of
various techniques, such as reducing the scheduling complexities,
improving computation estimations, and incorporating network
topology and communication traffic. A promising avenue for
solving the first two problems is by parallelizing static scheduling
on the target parallel machine where the user program executes [2].

In UNC algorithms, clusters obtained through scheduling are
assigned to a bounded number of processors. All nodes in a cluster
must be scheduled to the same processor. This property makes the
cluster scheduling algorithms more complex than the standard BNP
scheduling algorithms. Two such algorithms called Sarkar’s
assignment algorithm and Yang’s RCP algorithm are described in
(28} and [33], respectively. Sarkar’s algorithm combines the cluster
merging and ordering nodes into one step, considering the
execution order. RCP merges clusters without considering the
execution order, which may lead to a poor decision on merging.
However, RCP has a lower complexity. Both algorithms are simple
and do not utilize the information provided by the UNC
scheduling. Generally, cluster scheduling is a relatively
unexplored area. More effective algorithms are to be designed. It
would be an interesting study to compare the BNP approach with
the UNC+CS approach.

The APN algorithms can be fairly complicated because they
take into account more parameters. Further research is required in
this area, and the effects of topology and routing strategy need to be
determined.

References

[1] I Ahmad and Y .-K. Kwok, “A New Approach to Scheduling Parallel
Programs Using Task Duplication,” Proc. of Int’l Conf. Parallel
Processing, vol. 11, pp. 47-51, Aug. 1994.

—, “A Parallel Approach to Multiprocessor Scheduling,” Proc. of
Int'l Parallel Processing Symposium, Apr. 1995, pp. 289-293.

1. Ahmad, Y.-K. Kwok, M.-Y. Wu and W. Shu, “Automatic
Parallelization and Scheduling of Programs on Multiprocessors using
CASCH,” Proc. of Int’l Conf. Parallel Proc., Aug. 1997, pp. 288-291.
H.H. Ali and H. El-Rewini, “The Time Complexity of Scheduling
finterval Orders with Communication is Polynomial,” Parallel
Processing Letters, vol. 3, no. 1, 1993, pp. 53-58.

A. Al-Maasarani, Priority-Based Scheduling and Evaluation of
Precedence Graphs with Communication Times, M.S. Thesis, King
Fahd University of Petroleum and Minerals, Saudi Arabia, 1993.
M.A. Al-Mouhamed, “Lower Bound on the Number of Processors
and Time for Scheduling Precedence Graphs with Communication
Costs,” IEEE Trans. Software -Engineering, vol. 16, no. 12, Dec.
1990, pp. 1390-1401.

J. Baxter and J.H. Patel, “The LAST Algorithm: A Heuristic-Based
Static Task Allocation Algonithm,” Proc. of Inr’l Conf Parallel
Processing, vol. 11, pp. 217-222, Aug. 1989.

TL. Casavant and J.G. Kuhl, “A Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems,” JEEE Trans. on

{2]
(3]

4]

(51

{6}

7]

(8]

537

(9

[10]

{11}

{12]

13
(14}

[15]
(16]

[17]

(18]

[19]

(20

f21]

[22]

23

24

[25]

(26}

271

(28]

29

(30}

(31

(32}

[33}
[34]

Soft. Eng., vol. 14, no. 2, pp. 141-154, Feb. 1988.

H. Chen, B. Shirazi and J. Marquis, “Performance Evaluation of A
Novel Scheduling Method: Linear Clustering with Task Duplication,”
Proc. of Int'l Conf. on Parallel and Dist. Sys., pp. 270-275, Dec. 1993.
Y.C. Chung and S. Ranka, “Application and Performance Analysis of
a Compile-Time Optimization Approach for List Scheduling
Algorithms on Distributed-Memory Multiprocessors,” Proc. of
Supercomputing 92, pp. 512-521, Nov. 1992.

E.G. Coffman, Computer and Job-Shop Scheduling Theory, Wiley,
New York, 1976.

LY. Colin and P. Chreticnne, “C.P.M. Scheduling with Small
Computation Delays and Task Duplication,” Operations Research,
pp. 680-684, 1991.

M. Cosnard and M. Loi, “Automatic Task Graph Generation
Techniques,” Parallel Proc. Lent., Dec. 1995, pp. 527-538.

H. El-Rewini and T.G. Lewis, “Scheduling Parallel Programs onto
Arbitrary Target Machines,” Journal of Parallel and Distributed
Computing, vol. 9, no. 2, pp. 138-153, Jun. 1990.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W H. Freeman and Co., 1979.

A. Gerasoulis and T. Yang, “A Comparison of Clustering Heuristics
for Scheduling DAGs on Multiprocessors,” Journal of Parallel and
Distributed Computing, vol. 16, no. 4, pp. 276-291, Dec. 1992.

JJ. Hwang, Y.C. Chow, F.D. Anger and C.Y. Lee, “Scheduling
Precedence Graphs in Systems with Interprocessor Communication
Times,” SIAM J. on Comp., vol. 18, no. 2, pp. 244-257, Apr. 1989.
H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing,” IEEE Trans.
Computers, vol. C-33, Nov. 1984, pp. 1023-1029.

A.A. Khan, CL. McCreary and M.S. Jones, “A Comparison of
Multiprocessor Scheduling Heuristics,” Proc. of Int'l Conf. on
Parallel Processing, vol. 11, pp. 243-250, Aug. 1994.

S.J. Kim and J.C. Browne, “A General Approach to Mapping of
Parallel Computation upon Multiprocessor Architectures,” Proc. of
Int’l Conference on Parallel Processing, vol. 11, pp. 1-8, Aug. 1988.
B. Kruatrachue and T.G. Lewis, “Duplication Scheduling Heuristics
(DSH): A New Precedence Task Scheduler for Parallel Processor
Systems,” Technical Report, Oregon State University, Corvallis, OR
97331, 1987.

Y.-K. Kwok and 1. Ahmad, “Dynamic Critical-Path Scheduling: An
Effective Technique for Allocating Task Graphs to Multiprocessors.”
IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 5, May
1996, pp. 506-521.

“Optimal and Near-Optimal Allocation of Precedence-
Constrained Tasks to Parallel Processors: Defying the High
Complexity Using Effective Search Technique,” submitted for
publication.

C. McCreary and H. Gill, “Automatic Determination of Grain Size for
Efficient Parallel Processing,” Communications of the ACM, vol. 32,
pp. 1073-1078, Sep. 1989.

N. Mehdiratta and K. Ghose, “A Bottom-Up Approach to Task
Scheduling on Distributed Memory Multiprocessor,” Proc. of Int'!
Conf. on Parallel Processing, vol. 11, pp. 151-154, Aug. 1994,

M.A. Palis, J.-C. Liou, and D.SL. Wei, “Task Clustering and
Scheduling for Distributed Memory Parallel Architectures,” /EEE
Trans. Parallel and Dist. Systems, vol. 7, no. 1, Jan. 1996, pp. 46-55.
—, “Towards an Architecture-Independent Analysis of Parallel
Algorithms,” SIAM Journal on Computing, vol. 19, no. 2, pp. 322-
328, Apr. 1990.

V. Sarkar, Partitioning and Scheduling Parallel Programs for
Multiprocessors, MIT Press, Cambridge, MA, 1989.

B. Shirazi, H. Chen and J. Marquis, “Comparative Study of Task
Duplication Static Scheduling versus Clustering and Non-clustering
Techniques,” Concurrency: Practice and Experience, vol. 7(5), Aug.
1995, pp. 371-390.

B. Shirazi, M. Wang and G. Pathak, “Analysis and Evaluation of
Heuristic Methods for Static Scheduling,” Journal of Parallel and
Distributed Computing, no. 10, pp. 222-232, 1990.

G.C. Sih and E.A. Lee. “A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor
Architectures,” IEEE Trans. on Parallel and Distributed Systems, vol.
4, no. 2, pp. 75-87, Feb. 1993.

M.-Y. Wu and D.D. Gajski, “Hypertool: A Programming Aid for
Message-Passing Systems,” IEEE Trans. on Parallel and Distributed
Svstems, vol. 1, no. 3, pp. 330-343, Jul. 1990.

T. Yang and A. Gerasoulis, “List Scheduling with and without
Communication Delays,” Parallel Comp.. (19). 1993, pp. 1321-1344.
—, "DSC: Scheduling Parallel Tasks on an Unbounded Number of
Processors,” JEEE Trans. on Paralle! and Distributed Systems, vol. 5,
no. 9, pp. 951-967, Sep. 1994.

