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Abstractt 
The problem of scheduling a weighted directed acyclic graph 

(DAG) to a set of homogeneous processors to minimize the 
completion time has been extensively studied. The NP- 
completeness of the problem has instigated researchers to propose 
a myriad of heuristic algorithms. While these algorithms are 
individually reported to be efficient, it is not clear how effective 
they are and how well they compare against each other. A 
comprehensive performance evaluation and comparison of these 
algorithms entails addressing a number of difficult issues. One of 
the issues is that a large number of scheduling algorithms are based 
upon radically different assumptions, making their comparison on 
a unified basis a rather intricate task. Another issue is that there is 
no standard set of benchmarks that can be used to evaluate and 
compare these algorithms. Furthermore, most algorithms are 
evaluated using small problem sizes, and it is not clear how their 
performance scales with the problem size. In this paper, we first 
provide a taxonomy for classifying various algorithms into 
different categories according to their assumptions and 
functionalities. We then propose a set of benchmarks which are of 
diverse structures without being biased towards a particular 
scheduling technique and still allow variations in important 
parameters. We have evaluated 15 scheduling algorithms, and 
compared them using the proposed benchmarks. Based upon the 
design philosophies and principles behind these algorithms, we 
interpret the results and discuss why some algorithms perform 
better than the others. 
Keywords: Perfonriance Evaluation, Benchmarks, 
Multiprocessors, Parallel Processing, Scheduling, Task Graphs, 
Scalability. 

1 Introduction 
The problem of scheduling a weighted directed acyclic graph 

(DAG), also called a task graph or macro-dataflow graph, to a set 
of homogeneous processors to minimize the completion time, has 
intrigued researchers even before the advent of parallel computers. 
The problem is NP-complete in its general forms [15], and 
polynomial-time solutions are known only for a few restricted 
cases [ 1 I]. Since tackling the scheduling problem in an efficient 
manner is imperative for achieving a meaningful speedup from a 
parallel or distributed system, it  continues to be a focus of great 
attention from the research community. Considerable research 
efforts expended in solving the problem have resulted in a myriad 
of heuristic algorithms. While each heuristic is individually 
reported to be efficient, it is not clear how effective these 
algorithms are and how they compare against each other on a 
unified basis. 

The objectives of this study include proposing a set of 
benchmarks and using them to evaluate the performance of a set of 
DAG scheduling algorithms (DSAs) with various parameters and 
performance measures. Since a large number of DSAs have been 
reported in the literature with radically different assumptions, it is 
important to demarcate these algorithms into various classes 
according to their assumptions about the program and machine 
model. A performance evaluation and comparison study should 
provide answers to the following questions: 

t. This research was supported by a grant from the Hong Kong 
Research Grants Council under contract number HKUST 734196E. 

What are the important performance measures? The 
performance of a DSA is usually measured in terms of the 
quality of the schedule (the total duration of the schedule) and 
the running time of the scheduling algorithm. Sometimes, the 
number of target processors allocated is also taken as a 
performance parameter. One problem is that usually there is a 
trade-off between the first two performance measures; that is, 
efforts to obtain better solution often incur a higher time- 
complexity. Furthermore, using more processors can possibly 
result in a better solution. Another problem is that most 
algorithms are evaluated using small problem sizes, and it is 
not known how the algorithms scale with the problem size. 
What problem parameters affect the performance? The 
performance of DSAs, in general, tends to bias towards the 
problem graph structure. In addition, other parameters such as 
the communication-to-computation ratio, the number of nodes 
and edges in the graph, and the number of target processors 
also affect the performance of a DSA. Thus, it is important to 
measure the performance of DSAs by robustly testing them 
with various ranges of such parameters. 
What benchmarks should be used? There does not exist any 
set of benchmarks that can be considered as a standard to 
evaluate and compare various DSAs on a unified basis. The 
most common practice is to use random graphs. The use of 
task graphs derived from various parallel applications is also 
common. However, in both cases, there is again no standard 
that can provide a robust set of test cases. Therefore, there is a 
need for a set of benchmarks that are representative of various 
types of synthetic and real test cases. These test cases should 
be diverse without being biased towards a particular 
scheduling technique and should allow variations in important 
parameters. 
How does the performance of DSAs vary? Since most DSAs 
are based on heuristics techniques, bounds on their 
performance levels and variations from the optimal solution 
are not known. In addition, the average, worst, and best case 
performance of these algorithms is not known. Furthermore, 
since not all DSAs make identical assumptions, they must be 
segregated and evaluated within various categories. 
Why some algorithms perform better? Although some 
qualitative and quantitative comparisons of some DSAs have 
been carried out in the past (see [16], [19], [30]), they mainly 
presented experimental results without giving a rationale of 
why some algorithms performs well and some do not. The 
previous studies were also limited to a few algorithms and did 
not make a comprehensive evaluation. The design 
philosophies and characteristics of various algorithms must be 
understood in order to assess their merits and deficiencies. The 
qualitative analyses can ensue some future guidelines for 
designing even better heuristics. 
In this paper, we describe a performance study of various DSAs 

with the aim of providing answers to the questions posed above. 
First, we define the DAG scheduling problem in the next section, 
and provide an overview of various fundamentals scheduling 
techniques and attributes that are shared by a vast number of DSAs 
in Section 3. This is followed by a chronological summary and a 
taxonomy of various DSAs reported in the literature presented in 
Section 4. Since it is not the objective of this research to provide a 
survey on this topic, the purpose of this taxonomy is to set a context 
in which we select a set of algorithms for benchmarking. We select 
15 algorithms and explain their major characteristics. All of these 
algorithms have been implemented on a common platform and 
tested using the same suite of benchmark task graphs with a wide 
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range of parameters which will be introduced in Section 5.  
Compansons are made within each group whereby these 
algonthms are ranked from the performance and complexity 
standpoints Section 6 includes the results and compansons and 
Section 7 concludes the paper 
2 TheModel 

We consider the general model assumed for a task graph that 
has been commonly used by many researchers (see [8] for 
explanation). Some simplifications in the model are possible, and 
will be introduced later We assume the system consists of a 
number of identical (homogeneous) processors. Although 
scheduling on heterogeneous processors is also an interesting 
problem, we confine the scope of this study to homogeneous 
processors only The number of processors can be limited (aven as 
an input parameter to the scheduling algonthm) or unlimited. 

The DAG is a genenc model of a parallel program consisting 
of a set of processes (nodes) among which there are dependencies. 
A node in the DAG represents a task which in turn is a set of 
instructions that must be executed sequentially without preemption 
in the same processor. A node with no parent is called an entry node 
and a node with no child is called an exit node. The weight on a 
node is called the computation cost of a node n, and is denoted by 
w ( n , )  . The graph also has directed edges representing a partial 
order among the tasks The partial order introduces a precedence- 
constrained directed acyclic graph (DAG) and implies that if 
n, -+ n, , then n, is a child which cannot start until its parent n, 
finishes and sends its data to n, The weight on an edge is called 
the communication cost of the edge and is denoted by c(n,, n,) . 
This cost is incurred if n, and n, are scheduled on different 
processors and is considered to be zero if n, and n, are scheduled 
on the same processor. The communication-to-computation-ratio 
(CCR) of a parallel program is defined as its average 
communication cost divided by its average computation cost on a 
given system. 

The node and edge weights are usually obtained by estimation 
or profiling [ 131, [32]. Scheduling of a DAG is performed statically 
(1 e., at compile time) since the information about the DAG 
structure and costs associated with nodes and edges must be 
available a prrorz. The objective of DAG scheduling is to find an 
assignment and the start times of tasks to processors such that the 
schedule length (i.e., the overall duration of the schedule) is 
minimized such that the precedence constraints are preserved. 
3 Characteristics of Scheduling Algorithms 

The general DAG scheduling problem has been shown to be 
NP-complete (1.51, and remains intractable even with highly 
simplifying assumptions applied to the task and machine models 
[26], [27]. Nevertheless, polynomial-time algonthms for some 
special cases have been reported: [4], [ 111. 

In view of the intractability of the problem, researchers have 
resorted to designing efficient heunstics which can find good 
solutions within a reasonable amount of time. Most scheduling 
heunstic algonthms are based on the lisr schedulmg technique. The 
basic idea in list scheduling is to assign pnonties to the nodes of the 
DAG and place the nodes in a list arranged in descending order of 
prionties. The node with a higher priority is examined for 
scheduling before a node with a lower prionty; if more than one 
node has the same pnority, ties are broken using some method. 

There are, however, numerous vanations in the methods of 
assigning priorities and maintaining the ready list, and cntena for 
selecting a processor to accommodate a node. We descnbe below 
some of these vanations and show that they can be used to 
charactenze most scheduling algonthms 

Assigning Priorities to Nodes: Two major attnbutes for 
assigning pnonties are the r-level (top level) and b-level (bottom 
level). The t-level of a node ti ,  is the length of the longest path from 
an entry node to n, in the DAG (excluding ti,). Here, the length of a 
path IS  the sum of all the node and edge weights along the path. The 
t-level of n, highly correlates with 12,’s earliest possible start time. 
The t-level of a node is a dynamic attnbute because the weight of 
an edge may be Leroed when the two incident nodes are scheduled 

to the same processor. The b-level of a node n, is the length of the 
longest path from node n, to ode and is bounded by the 
length of the cnfzcal path. A c ath (CP) of a DAG, is a path 

ose length is the maximum. from an entry node to an exit 
Different DSAs have used t and b-level attnbutes in a 

n a higher prionty to a node variety of ways. Some algorit 
with a smaller !-level while some algonthms assign a higher 
priority to a node with a larger b-level. Still some algonthms assign 
a higher pnority to a node with a larger (b-level - t-level). In 
general, scheduling in descending order of b-level tends to schedule 
critical path nodes first while scheduling in ascending order o f t -  
level tends to sch 

of a node on a 

two already scheduled nodes. 
Critical-Path-Based vs. Non-Critic 

path-based algorithms determine schedul 
priority to a critical-path node (CPN) 
algorithms do not give special preferen 
priorities simply based on the levels or other attnbutes of the nodes. 

Static List vs. Dynamic List: The set of ready n 
maintained as a ready list. Initially, the ready list inc 
entry nodes. After a node is scheduled, the nodes 
scheduled node are inserted into the ready list such 
sorted in descending order of node pnonties. The list can be 
maintained in two ways: A ready list is static if it is constructed 
before scheduling starts and remains the same throughout the 
whole scheduling process. is called dynamic if it is 
rearranged according to the 

ing a node to a processor, 
most scheduling algorithms inimize the start-time of a 
node. This is a greedy strat er, some algonthms do not 
necessanly minimize the 
factors as well. 

expressed in terms of the number of node, v ,  
e, and the number of processors, p .  The major 
include a traversal of the DAG and a se 
processors to place a node. Simple static priority assignment in 
general results in a lower time-complexity while dynamic pnority 
assignment inevitably leads to a higher time-complexity of the 
scheduling algorithm. Backtracking can incur a very high time 
complexity and is therefore 
4 A Classification of 

The static DAG scheduling problem has been tackled with 
large variations in the task graph and machines models. Figure I 
provides a classification and chronological summary of various 
static DSAs. Since it is not the purpose of this paper to provide a 
survey of such algorithms, this summary is by no means complete 
(a more extensive taxonomy on the general scheduling problem has 
been proposed in [SI). Furthermore, a complete overview of the 
literature is beyond the scope of this paper. Nevertheless, we 
believe our classification scheme can be extended to most of the 
reported DSAs. 

Earlier algorithms have made radically simplifying 
assumptions about the task graph representing the program and the 
model of the parallel processor system [ l  I]. These algorithms 
assume the graph to be of a special structure such as a tree, forks- 
join, etc. In gcneral, however, parallel programs come in a vanety 
of structures, and as such many recent algorithms are designed to 
tackle arbitrary graphs. These algorithms can be further divided 
into two categones. Some algorithms assume the computational 
costs of all the tasks to be 111 whereas other algorithms 
assume the computational c ks to be arbitrary. Some of the 
earlier work has also assum ter-task communication to be 
zero, that is, the task graph contains precedence but without cost. 
The problem becomes less complex in the absence of 
communication delays. Furthermore, scheduling with 

Greedy vs. Non-Greedy: 

Time-Complexity: The time-complexity of a DSA is usually 



(1979): Papadimitnou and Yannakakis’s Interval-Order algonthm [ I  I ]  
(1993): Ah and El-Rewini’s Interval-Order algonthm [4] 

(1961): Hu’s algorithm [I11  

(1972): Coffman and Graham’s 2-Processor algonthm [ I  I ]  

(1972): Dynamic Prog Scheduling by Rammamoorthy e r d  [ I l l  
(1974): Level-based algorithms by Adam ef a/ [ I  I ]  
(1984): CP/MISF by Kasaharaand Nanta [I81 
(1984): DFiIHS by Kasahara and Nanta 1181 

(1988): DSH by Kruatrachue & Lewis 1211 
(1990): PY by Papadimitnou & Yannakalus 1271 
(1991): LWB by Colin &Chreuenne 1121 
(1992): BTDH by Chung & Ranka [ IO] 
(1993): LCTD by Chen era1 191 
(1994): CPFD by Ahmad & Kwok [ I ]  
(1996): MID by M Palis ef a/ [26] 

(1988): LC by Kim & Browne [20] 
(1989): EZ by Sarkar [ZS] 
(1990) MD by WU & GaJSki [32] 
(1994): DSC by Yang & Gerasoulis 1331 
(1996): DCP by Kwok & Ahmad [22] 

, 

(1993): DLS by Sih &Lee [311 
(1994): BU by Mehdiratta & Chose (251 
(1995): MH by El-Rewini &Lewis [I41 

byAdamefa/ [ I I  
(1987): ISH by Kruatrachue & Lewis [211 
(1989): CLANS by McCreary & Gill [241 
(1989): LAST by BaxIer& Patel [71 
(1989): ETF by Hwang er U /  [I71 
(1990): MCP by Wu & Gajslu [321 Figure 1: A partial taxonomy of the multiprocessor scheduling problem. 

communication delays is NP-complete. 
Scheduling with communication may be done using 

duplication or without duplication. The rationale behind the task- 
duplication based (TDB) scheduling algorithms is to reduce the 
communication overhead by redundantly allocating some nodes to 
multiple processors. In duplication-based scheduling, different 
strategies can be employed to select ancestor nodes for duplication. 

Non-TDB algorithms assuming arbitrary task graphs with 
arbitrary costs on nodes and edges can be divided into two 
categories: some scheduling algorithms assume the availability of 
unlimited number of processors, while some other algorithms 
assume a limited number of processors. The former class of 
algorithms are called the UNC (unbounded number of clusters) 
scheduling algorithms [3] and the latter the BNP (boundednumber 
of processors) scheduling algorithms [3]. In both classes of 
algorithms, the processors are assumed to be fully-connected and 
no attention is paid to link contention or routing strategies used for 
communication. The technique employed by the UNC algorithms 
is also called clusrering (see [14], [16], [20], [26], [34] for details). 
At the beginning of the scheduling process, each node is considered 
a cluster. In the subsequent steps, two clusterst are merged if the 
merging reduces the completion time. This merging procedure 
continues until no cluster can be merged. The rationale behind the 
UNC algorithms is that they can take advantage of using more 
processors to further reduce the schedule length. However, the 
clusters generated by the UNC may need a post-processing step for 
mapping the clusters onto the processors because the number of 
processors available may be less than the number of clusters. 

A few algorithms have been designed to take into account the 
most general model in which the system is assumed to consist of an 

+. We use the term cluster and processor interchangeably since in the 
UNC scheduling algorithms. merging a single node cluster to 
another cluster is analogous to scheduling a node to P processor. 

arbitrary network topology, of which the links are not contention- 
free. These algorithms are called the APN (arbirrap processor 
network) scheduling algorithms [3]. In addition to scheduling tasks, 
the APN algorithms also schedule messages on the network 
communication links. 

In the following we list the algorithms chosen in our study. For 
detailed descriptions and characteristics we refer the reader to the 
sited publications. To narrow the scope of this paper. we do not 
consider TDB algorithms (for a more detailed overview of such 
algorithm, see [ I n .  

BNP Scheduling Algorithms: HLFET [ I  I], ISH [21], MCP 

UNC Scheduling Algorithms: EZ [28], LC [20], DSC [34], 

APN Scheduling Algorithms: MH 1141, DLS 1311, BU 1251 

[32], ETF [17], DLS [31], and LAST [7]. 

MD [32], and DCP [22]. 
- -  - .  - -  - -  

and BSA [2]. 
5 Benchmark Graphs 

In our study, we propose and use a suite of benchmark graphs 
consisting of 5 different sets. The generation techniques and 
characteristics of these benchmarks are described as follows: 
5.1 Peer Set Graphs 

The Peer Ser Graphs (PSGs) are example task graphs used by 
various researchers and documented in publications. These graphs 
are usually small in size but are useful in that they can be used to 
trace the operation of an algorithm by examining the schedule 
produced. A detailed description of the graphs is provided in 
Section 6.1. 
5.2 Random Graphs with Optimal Solutions 

These are random graphs for which we have obtained optimal 
solutions using a branch-and-bound algorithm. We call these graph 

(RGBOS). This suite of random task graphs consists of three 
subsets of graphs with different CCRs (0.1, 1.0, and 10.0). Each 
subset consists of graphs in which the number of nodes vary from 

random graphs with oprimal solutions using branch-and-bound 
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I O  to 32 with increments of 2, thus, totalling 12 graphs per set. The 
graphs were randomly generated as follows: First the computation 
cost of each node in the graph was randomly selected from a 
uniform distnbution with the mean equal to 40 (minimum = 2 and 
maximum = 78). Beginning with the first node, a random number 
indicating the number of children was chosen from a uniform 
distnbution with the mean equal to v/ 10. The communication cost 
of each edge was also randomly selected from a uniform 
distnbution with the mean equal to 40 times the specified value of 
CCR. To obtain optimal solutions for the task graphs, we applied a 
parallel A* algorithm [23] to the graphs. Since generating optimal 
solutions for arbitranly structured task graphs takes exponential 
time, i t  is not feasible to obtain optimal solutions for large graphs. 
5.3 Random Graphs with Pre-Determined Optimal Schedules 

These are random graphs wirh pre-derermzned optimal 
solurions (RCPOS). The method of generating graphs with known 
optimal schedules is as follows: Suppose that the optimal schedule 
length of a graph and the number of processors used are specified 
as Lo,,, and p ,  respectively. For each PE i, we randomly generate a 
number x, from a uniform distnbution with mean v / p  . The time 
interval between 0 and Lop, of PE i is then randomly partitioned 
into x, sections. Each section represents the execution span of one 
task, thus, x, tasks are “scheduled’ to PE i with no idle time slot. 
In this manner, v tasks are generated so that every processor has the 
same schedule length. To generate an edge, two tasks no and nb 
are randomly chosen such that FT(n, )  < S T ( n b ) .  The edge is 
made to emerge from no to nb . As to the edge weight, there are two 
cases to consider: (I) the two tasks are scheduled to different 
processors, and (11) the two tasks are scheduled to the same 
processor. In the first case the edge weight is randomly chosen from 
auniform distnbution with maximum equal to ( S T ( n b )  - F T ( n , ) )  
(the mean IS adjusted according to the given CCR value). In the 
second case the edge weight can be an arbitrary positive integer 
because the edge does not affect the start and finish times of the 
tasks which are scheduled to the same processor. We randomly 
chose the edge weight for this case according to the given CCR 
value. Using this method, we generated three sets of task graphs 
with three CCRs: 0.1, 1 .O, and 10.0. Each set consists of graphs in 
which the number of nodes vary from 50 to 500 in increments of 
50; thus, each set contains I O  graphs. 
5.4 Random Graphs without Optimal Schedules 

The fourth set of benchmark graphs, referred to as random 
graphs with no known oprzmal solutions (RGNOS), consists of 250 
randomly task graphs. The method of generating these random task 
graphs is the same as that in RGBOS. However, the sizes of these 
graphs are much larger, varying from 50 nodes to 500 nodes with 
increments of 50. For generating the complete set of 250 graphs, we 
vaned three parameters: size, communication-ro-computarion ratio 
(CCR), and parallelism. Five different values of CCR were 
selected: 0.1, 0.5, 1.0, 2.0 and 10.0. The parallelism parameter 
determines the widrh (defined as the largest number of non- 
precedence-related nodes in the DAG) of the graph. Five different 
values of parallelism were chosen: 1,2,3,4 and 5. A parallelism of 
1 means the average width of the graph is A,  a value of 2 means 
the graph has an average width of 2&, and so on. Our main 
rationale for using these large random graphs as a test suite is that 
they contain as  their subset a variety of graph structures. This 
avoids any bias that an algonthm may have towards a particular 
graph structure. 
5.5 Traced Graphs 

The last set of benchmark graphs, called traced graphs (TG), 
represent some of the numencal parallel application programs 
obtained via a parallelizing compiler [3]. We use Cholesky 
factonzation graphs for this category. 
6 Performance Results and Comparison 

In this section, we present the performance results and 
compansons of the 15 scheduling algonthms which were 
implemented on a SUN SPARC IPX workstation with all of the 
benchmarks descnbed above. The algonthms are compared within 
their own classes, although some comparison of UNC and BNP 
algonthms are also carried out. The compansons are made using 

the following SIX measures. 
Normalized Schedule Length (NSL): The main performance 
measure of an algonthm is the schedule length of its output 
schedule. The NSL of an algorithm is defined as: 

N S L  = L/ (  C ~ ( n , ) )  , where L is the schedule length. It 
“,E C P  

’ n costs on the CP 
gth. Such lower 
and the optimal 

processors used 
m and i t  vanes 

important performance 
measure becaus e can severely limit the 

6.1 Results for the 
The results of applying the UNC and BNP algonthms to the 

PSG are shown in Table 1. The APN algonthms were not applied 
to this set of example graphs because many network topologies are 
possible as test cases making comparison quite difficult. As 
can be seen from the table, hedule lengths produced vary 
considerably, despite the sizes of the graphs. This 
phenomenon is contrary to our expectation that the algorithms 
would generate the same schedule lengths for most of the cases. It 
also indicates that the performance of vanous DSAs is more 
sensitive to the di f the graphs rather than their 
sizes. A plausible 
that the ineffecti chnique employed 
algorithms leads 
scheduling process so that long schedule lengths are produced. 
Table 1: Schedule lengths genented 
the PSGs. 

e UNC and BNP algonthms for 

Among the UNC algorith e DCP algorithm consistently 
generate the best solutions. ver, there is no single BNP 
algorithm which outperform all the others. In summary, we make 
the following observations: 

The greedy BNP algonthms give very similar schedule lengths 
as can be seen from the results of HLFET, ISH, ETF, MCP and 
DLS. 
Non-greedy and non-CP-based UNC algorithms in general 
perform worse than the greedy BNP algorithms. 
CP-based algonthms perform better than non-CP-based ones 
(DCP, DSC, MD and MCP perform better than others). 

0 Among the CP-based algonthms, dynamic-list algorithms 
perform better than static-list ones (DCP, DSC and MD in 
general perform better than MCP). 

6.2 Results for RGBOS benchmarks 
The results of the UNC and BNP algorithms for the RGBOS 

benchmarks are shown in Tab1 2 and Table 3, respectively. Since 
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Table 3: The percentage degradations from the optimal 
solutions of for the RGBOS benchmarks (BNP algonthms) 
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Table 3 indicates that the BNP algorithms generate fewer 
optimal solutions compared to the DCP algorithm. The overall 
average degradations are also higher than that of the DCP 
algorithm. However, compared with other UNC algorithms, the 
MCP, ETF, ISH, and DLS algorithms perform better both in terms 
of the number of optimal solutions generated and the overall 
degradations. Among all the BNP algorithms, the MCP algorithm 
performs the best while the LAST algorithm performs the worst. 

We summarize our observations from Table 2 and Table 3 as 
follows. 

Greedy BNP algorithms have shown higher capability in 
generating optimal solutions than the non-greedy and non-CP- 
based UNC algorithms with DCP as the only exception. 
CP-based algorithms are clearly better than the non-CP-based 
ones as can be seen from the results of DCP and MCP. 

6.3 Results for the RGPOS Benchmarks 
The results of applying the UNC and BNP algorithms to 

RGPOS benchmarks are shown in Table 4 and Table 5, 
respectively. Since optimal solutions for specific network 
topologies are not known, the APN algorithms were again not 
applied to the RGPOS task graphs. In Table 4, the percentage 
degradations from the optimal schedule lengths of the UNC 
algorithms are shown. The overall average degradations for each 
algorithm are again shown in the last row of the table. As can be 
seen, when CCR is 0.1. the DCP generates optimal solutions for 
more than half of the test cases and the overall average degradation 
is less than 2%. Other algorithms generate optimal solutions for a 
few number of cases and the overall average degradation is larger. 
The percentage degradations in general increase with CCRs. When 
CCR is 10.0, none of the UNC algorithms except DCP can generate 
any optimal solution. The results given in Table 5 indicate that the 
BNP algorithms generate a similar number of optimal solutions and 
values of percentage degradations. When CCR is 10.0, none of the 
BNP algorithms generates any optimal solutions. In summary, the 
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results of Table 4 and Table 5 lead to similar conclusions as those 
made in Section 6.2. 

Table 4: The percentage degradations from the optimal 
solutions of for the RGPOS benchmarks (UNC algorithms). 
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(intentionally) much smaller, For example, a 500-node task graph 
is scheduled to 8 processors'. The results of the APN algonthms 
suggest that there can be substantial difference in the performance 
of these algonthms. For example, significant differences are 
observed between the NSLs of BSA and BU. The performance of 
DLS is relatively stable with respect to the graph size while MH 
yields fairly long schedule lengths for large graphs. As can be seen, 
the BSA algonthm performs admirably well for large graphs. The 
main reason for the better performance of BSA is an efficient 
scheduling of communication messages that can have a drastic 
impact on the overall schedule length. In terms of the impact of the 
topology, we find that all algorithms perform better on the 
networks with more communication links. However, these results 
are excluded due to space limitations. 
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Figure 2: Average NSL of the UNC, BNP and 
APN algorithms for RGNOS benchmarks. 

6.4.2 Number of Processors Used 
The number of processors used by an algorithm is an important 

performance measure especially for the algonthms that are 
designed for using an unlimited number of processors. The BNP 
algonthms are designed for a bounded number of processors, but as 
explained earlier, were tested them with a very large number 
(virtually unlimited number) of processors; we then noted the 
number of processors actually used. 

Figure 3(a) shows the average number of processors used by 
the BNP scheduling algorithms. The DLS algorithm uses the 
smallest number of processors, even compared to ETF although 
both algonthms share similar concepts. The numbers of processors 
used by the MCP and ETF algorithms are close. On the other hand, 
these numbers for the HLFET and ISH are also similar. 

Figure 3(b) shows the average number of processors used by 
the UNC scheduling algonthms. As can be seen, the DSC algorithm 
uses a large number of processors. This is because it uses a new 
processor for every node whose start time cannot be reduced on a 
processor already in use. The LC and EZ algorithms also use more 
processors than others because they pay no attention on the use of 
processors. In contrast, the DCP algonthm has a special processor 
finding strategy: as long as the schedule length is not affected, it 
tnes to schedule a child to a processor holding its parent even 
though its start time may not reduce. The MD algorithm also uses 
relatively smaller number of processors because, to schedules a 
node to a processor, it first scans the already used processors. 
6.4.3 Algoriilim Running limes 

In this section, we compare the running times of all the 
algonthms. Table 6 shows the running times of the BNP scheduling 
algorithms for various number of nodes in the task graph. Each 
value in the table again is the average of 25 cases. The MCP 

+. The number of processors used by a typical UNC algonthm is very 
large-the LC algonthm. for instance, uses more than 100 proces- 
sors tor a 500-node task graph 

HmD*dW NunbrdW 

(a) UNC algorithms (b) BNP algonthms 

Figure 3: The average number of processors 
used for the RGNOS benchmarks. 

algorithm is found to be the fas algorithm while DLS and ETF 
are slower than the rest. The large running times of the DLS and 
ETF algorithms are primarily due to exhaustive calculations of the 
sfart times of all of the ready tasks on all of the processors. The 
running time of LAST and HLFET are also large while ISH takes 
reasonable amounts of time. Based on these running time results, 
the BNP algorithms can be ranked in the order: MCP, ISH, HLFET, 
LAST, and (DLS, ETF). 

From the running times wn 
in Table 6, we observe that the 
minimum running time. The are 
close. Based on these runnin be 
ranked in the order: LC, DSC, EZ, DCP, and MD. For the APN 
scheduling algorithms, the BU algorithm is found to be the fastest. 
The running times of the MH and BSA algorithms are close while 
those of the DLS algorithm are relatively large. Base 
results, in terms of running times, these algonthms can 
in the order: BU, BSA, MH, and DLS. 

Table 6: Average running times (in seconds) for all 
the algorithms using the RGNOS benchmarks 
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6.5 Results for Traced Graphs 

For the traced graphs resenting the parallel numerical 
application, Cholesky fact ,the results are shown in Figure 
4. Since the application on matrices, the graph sizes 
depend on the matrix dimensions. For a matrix dimension of N ,  the 
graph size is O ( N 2 ) .  We note that the performance of the BNP 
algorithms is quite similar with the exception that LAST performs 
much worse. By contrast, the performance of the UNC algonthms 
is much diverse. The relative performance of the APN algorithms 
is quite similar for both applications. 
7 Conclusions and Future Work 

performance study of 15 DSAs. 
important findings: 

For both the BNP and UNC 
the accurate scheduling of n 
general better than the other algorithms. 
Dynamic critical-path is better than static critical-path, as 
demonstrated by both the DCP and DSC algonthms. 
Insertion is better than non-insertion-for example, a simple 
algorithm such as ISH employing insertion can yield dramatic 
performance. 
Dynamic priority is in general better than static pnority, 
although it  can cause substantial complexity gain-for 
example the DLS and ETF algorithms have higher 
complexities. However, this is not always true-one exception, 
for example, is that the MCP algonthm using static prionties 
performs the best i P class. 
We have provided enchmarks which provide a variety 

of test cases including s of graphs with optimal solutions. 

In this paper, we have presented the results of an extensive 
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Figure 4: Average N S L  for 
Cholesky factorization task graphs.  

These can be good test cases for evaluating and comparing future 
algorithms. 

The current research concentrates on further elaboration of 
various techniques,  such as reducing the scheduling complexities, 
improving computation estimations, and incorporating network 
topology and communication traffic. A promising avenue for  
solving the first t w o  problems is by  parallelizing static scheduling 
on the target parallel machine where the user program executes [2]. 

In U N C  algorithms, clusters obtained through scheduling are 
assigned to  a bounded number o f  processors. All nodes in a cluster 
must be scheduled to  the same processor. This  property makes the  
cluster scheduling algorithms more complex than the standard BNP 
scheduling algorithms. T w o  such algorithms called Sarkar’s 
assignment algorithm and  Yang’s RCP algorithm are described i n  
[28] and [331, respectively. Sarkar’s algorithm combines the cluster 
merging and ordering nodes into one step, considering the  
execution order. RCP merges clusters without considering the  
execution order, which may lead to  a poor decision on merging. 
However, RCP has a lower complexity.  Both algorithms are simple 
and  do not utilize the information provided by the UNC 
scheduling. Generally, cluster scheduling i s  a relatively 
unexplored area. More  effective algorithms are to be designed. It 
would be an  interesting study to compare the BNP approach with 
the UNC+CS approach. 

T h e  A P N  algorithms can b e  fairly complicated because they 
take into account more  parameters. Further research i s  required in 
this area, and  the effects o f  topology and routing strategy need t o  be 
determined. 
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